In this paper, we investigate the impact of random dopant fluctuation (RDF) on the statistical variations in negative capacitance MOSFETs (NCFETs) through a device simulation coupled with the Landau–Khalatnikov (LK) equation. Compact models for feedback mechanisms that are based on the internal gate voltage amplification in NCFETs are proposed. The results show that internal voltage amplification plays a decisive role in performance improvement of device variability. Further, our simulation study demonstrates that owing to the feedback mechanism, the dispersions of the performance parameters in NCFETs exhibit different statistical distribution characteristics compared to their MOSFET counterparts. Our study may provide further insight regarding device and/or circuit designs utilizing NCFETs.
Read full abstract