Abstract In this article, the post quantum analogue of Sheffer polynomial sequences is introduced using concepts of post quantum calculus. The series representation, recurrence relations, determinant expression and certain other properties of this class are established. Further, the 2D-post quantum-Sheffer polynomials are introduced via generating function and their properties are established. Certain identities and integral representations for the 2D-post quantum-Hermite polynomials, 2D-post quantum-Laguerre polynomials, and 2D-post quantum-Bessel polynomials are also considered.
Read full abstract