Abstract
The calculus without the notion of limits is quantum calculus. Its study dates back to L. Euler in the middle of the eighteenth century whereas the systematic initiation on it was done by F.H. Jackson in the beginning of the twentieth century. The rapid growth on q-calculus is due to its applications in various branches of mathematical and physical sciences. Of them, one of the most basic and important functions in the theory of geometric function is convexity having its wider applications in pure and applied mathematics. As it still lacks the intensive study on quantum estimates on the various types of integral inequalities, we focus our study on quantum estimates of Hermite-Hadamard type integral inequality especially on coordinated convex functions. In this paper, we have extended Hermite-Hadamard type integral inequality for coordinated convex function in terms of quantum framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.