Abstract

<p>The primary emphasis of the present study is to introduce some novel characterizations of the interval-valued $ (\mathcal{I}.\mathcal{V}) $ right symmetric quantum derivative and antiderivative operators relying on generalized Hukuhara difference. To continue the study, we start with the concept of symmetric differentiability in the interval-valued sense and explore some important properties. Furthermore, through the utilization of the $ (\mathcal{I}.\mathcal{V}) $ symmetric derivative operator, we develop the right-sided $ (\mathcal{I}.\mathcal{V}) $ integral operator and explore its key properties. Also, we establish various $ (\mathcal{I}.\mathcal{V}) $ trapezium-like inequalities by considering the newly proposed operators and support line. Later on, we deliver another proof of the trapezium inequality through an analytical approach. Also, we present the numerical and visual analysis for the verification of our results.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.