In the brain, abnormal phosphorylation of tau leads to the formation of paired helical filaments, which are the main components of intraneuronal neurofibrillary tangles (NFT) (Grundke-Iqbal et al., 1986) that are characteristic of Alzheimer's disease (AD) and other tauopathies (Lee et al., 2001). There is an intense debate about the relationship of phospho-tau and the typical cognitive deficits in AD (Castellani et al., 2008) but, owing to the limited data that is available about synaptic circuits in the normal human brain and in that of the AD patient, the basic mechanism/s of cognitive deterioration are still a mystery. The article by Wang and Mandelkow (2016) presents a timely review of the roles of tau in physiology and disease. However, the role of hyperphosphorylation of tau in dendritic pathology is not fully addressed. Wang and Mandelkow concluded that NFT are probably unrelated to cognitive impairment, mainly based on studies using several lines of mice transgenic for wild-type or mutant human tau. However, in a previous study assessing the possible alterations to dendritic spines in pyramidal cells from AD patients (Merino-Serrais et al., 2013), we found a remarkable loss of dendritic spines from pyramidal cells containing NFT. Since pyramidal neurons represent the principal building blocks of the cerebral cortex and dendritic spines are the main postsynaptic elements of cortical excitatory synapses and are fundamental structures in memory, learning, and cognition (DeFelipe, 2015), these alterations constitute what we think is an important early event in the pathogenesis of AD. We used intracellular injections of Lucifer yellow (LY) in fixed brain tissue from AD patients to visualize and reconstruct dendritic arbors of pyramidal neurons—using high-resolution tile scan stacks of confocal microscopy images—to compare neurons that were free of signs of any neurofibrillary pathology with those showing either diffuse phospho-tau (putative pre-tangle state) or aggregated tau NFT. Following injection in the parahippocampal cortex and CA1, the sections were immunostained for LY and phospho-tau. In the so-called putative “pre-tangle” stage, the dendritic trees of pyramidal neurons were unchanged (pattern I; Figure 1, Panel 1). In the presence of well-developed NFT, however, dendritic spine loss was obvious (pattern IIb; Figure 1, Panel 2). In cases with an intermediate state of neurofibrillary pathology (pattern IIa), the loss of dendritic spines was more variable. Importantly, we compared neighboring cells with and without neurofibrillary pathology (see A, B in Figure 1, Panel 1) to avoid confounding factors such as: (1) morphological differences in the structure of pyramidal cells due to regional specializations (i.e., pyramidal cells in different cortical regions and layers may show morphological differences); (2) high inter-individual variability (sex, age, medical treatment, etc.,) factors that could affect brain structure; and (3) the highly variable course of AD, as the neuropathological changes are not homogenous among patients or in different regions of the brain of the same patient, giving rise to variation in the alterations to cortical circuits. Figure 1 Panel 1. Neurons and dendrites in the parahippocampal cortex of patient P9 injected with LY whose soma is free of phospho-tau PHF-tauAT8-ir (PHF-tauAT8-; A–D) or contains phospho-tau (PHF-tauAT8+ in the putative pre-tangle state (Pattern I; E–H) ... We concluded that the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously, but rather the characteristic cognitive impairment in AD is likely to depend on the relative number of neurons that have well-developed tangles. Certainly, these observations differ from those of studies on transgenic mouse brains, where human mutant tau was overexpressed. However, this discrepancy could be explained by the fact that transgenic mouse brains do not reproduce all features of AD found in humans. Furthermore, there are many molecular and structural differences between mouse and human brain. Thus, extrapolation of data obtained in mice and humans is rather difficult and possible mismatches between the two species should be taken into consideration when dealing with animal models of AD.
Read full abstract