ObjectiveTitanium (Ti) is considered bioinert and is still regarded as the “gold standard” material for dental implants. However, even ‘commercial pure’ Ti will contain minor fractions of elemental impurities. Evidence demonstrating the release of Ti ions and particles from ‘passive’ implant surfaces is increasing and has been attributed to biocorrosion processes which may provoke immunological reactions. However, Ti observed in peri-implant tissues has been shown to be co-located with elements considered impurities in biomedical alloys. Accordingly, this study aimed to quantify the composition of impurities in commercial Ti dental implants. MethodsFifteen commercial titanium dental implant systems were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). ResultsThe elemental composition of implants manufactured from commercially pure grades of Ti, Ti-6Al-4V, and the TiZr alloy (Roxolid) conformed to the respective ISO/ASTM standards or manufacturers´ data (TiZr/Roxolid). However, all implants investigated included exogenous metal contaminants including Ni, Cr, Sb, and Nb to a variable extent. Other contaminants detected in a fraction of implants included As and the radionuclides U-238 and Th-232. SignificanceAlthough all Ti implant studies conformed with their standard compositions, potentially allergenic, noxious metals and even radionuclides were detected. Since there are differences in the degree of contamination between the implant systems, a certain impurity fraction seems technically avoidable. The clinical relevance of these findings must be further investigated, and an adaptation of industry standards should be discussed.