Objective. Translational studies on animals play a vital role in the advancement of transcranial magnetic stimulation (TMS) as clinical technique. Nonetheless the relevance of these procedures is frequently limited by the lack of TMS systems specifically designed for small animals capable of producing comparable stimulation conditions to those found in human TMS. In this work, we propose to take advantage of the versatility of recently introduced TMS coil design methods to produce optimal rodent-specific TMS stimulators. Approach. A stream function inverse boundary element method (IBEM) has been used for producing three small sized mice-specific TMS coils of different geometries. They have been created for unilateral hemispheric stimulation of the rodent brain, and several constraints have been considered in the design process to satisfy essential performance requirements, such as minimum stored magnetic energy, minimum power dissipation, optimised maximum current density or minimization of the undesired electric field induced in non-target regions. In order to validate the presented strategy, three prototype coils have been built. The performance of each prototype has also been numerically investigated, where the electric field induced in a mouse model has been found by using an existing computational forward technique. Main results. Stream function IBEM represents an ideally suited approach for designing specific TMS coils for small animals, capable of fulfilling many essential functional and technical requirements. The prototypes produced in this work focally stimulate the right hemisphere of the mouse brain, and so they can be successfully used in lateralized TMS experiments. Significance. The design scheme proposed here can be used to produce efficient TMS stimulators for small animals, which can overcome some of the existing limitations found when producing more reliable translational experiments.
Read full abstract