Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are non-invasive techniques for tissue characterization. MRI/MRS in small phantoms with a clinical magnetic resonance scanner requires the design and development of dedicated radiofrequency coils. This paper describes the simulation, design, and application of a 1H transmit/receive Helmholtz coil, suitable for MRI/MRS studies in small phantoms with a clinical 3T scanner. Coil inductance and resistance were analytically calculated by taking into account the conductors cross geometry while magnetic field and sample-induced resistance were calculated with magnetostatic approaches. Finally, the coil sensitivity was measured with the perturbing sphere method. Successively, a coil prototype was built and tested on the workbench and by acquisition of MRI and MRS data. Results show that such coil could provide a low cost and easy to build device for MRI/MRS experiments with a clinical scanner in small specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.