Abstract
A coil with a high quality factor $Q$ is desired to obtain a high efficiency for inductive power transfer (IPT). $Q$ is proportional to the coil inductance and operating frequency, while it is inversely proportional to the coil resistance, which increases with frequency. An optimized frequency exists to achieve the maximum efficiency. Eddy currents and resulting ac resistance in Litz-wire coils are attributed to magnetic field. Especially, the induction component of the ac resistance is approximately proportional to the squared magnetic field to which the coil is exposed to. FEA simulations are conducted and surface integral method is employed to determine the squared field. Additionally, the volume integral method is proposed to evaluate the overall effect of the field on the induction resistance. The optimized frequency for the maximum efficiency is obtained, using the squared field calculation and resulting ac resistance evaluation. Sample prototype coils are manufactured to verify the resistance analysis methods. An IPT system is built employing these coils. Experiments show that the IPT system achieves the highest efficiency at frequencies closed to the predicted optimized ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.