Projection stereolithography creates 3D structures by projecting patterns onto the surface of a photosensitive material layer by layer. Benefiting from high efficiency and resolution, projection stereolithography 3D printing has been widely used to fabricate microstructures. To improve the geometric accuracy of projection stereolithography 3D printing for microstructures, a compensation method based on structure optimization is proposed according to mathematical analysis and simulation tests. The performance of the proposed compensation method is verified both by the simulation and the 3D printing experiments. The results indicate that the proposed compensation method is able to significantly improve the shape accuracy and reduce the error of the feature size. The proposed compensation method is also proved to improve the dimension accuracy by 21.7%, 16.5% and 19.6% for the circular, square and triangular bosses respectively. While the improvements on the dimension accuracy by 16%, 17.6% and 13.8% for the circular, square and triangular holes are achieved with the proposed compensation method. This work is expected to provide a method to improve the geometric accuracy for 3D printing microstructures by projection stereolithography.
Read full abstract