Abstract

Unintentional and intentional interference of terrestrial radio sources operating via geostationary relay satellites to legal users of satellite communication systems requires accurate determination of their location. Methods of terrestrial radio sources location are based on the calculation of an cross-аambiguity function by additive mixtures of signals and noise received from relay satellites. In the presence of frequency-phase instability of relay satellites heterodynes the retransmitted signals have phase distortions, which lead to a decrease in the signal-to-noise ratio (SNR) when calculating the cross- ambiguity function. The paper is aimed to study the effect of phase distortions caused by the instability of relay satellites heterodynes on SNR at the correlator output and to develop methods for their compensation based on statistical radio engineering and digital signal processing. The study of the proposed compensation methods was carried out by statistical simulation modeling. The SNR dependences at the correlator output on the duration of correlated signals for the model with a domi-nant frequency noise and frequency random walk have been obtained and a method for compensat-ing phase distortions caused by the instability of the relay satellites heterodynes has been developed. The energy gain has been estimated by applying the proposed compensation method. It has been shown that the developed method of compensation of relay satellites heterodynes instability allows achieving a significant gain in the SNR at the correlator output and contributes to increasing the probability of radio source signal detection from auxiliary relay satellites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.