Novel difluoromethylenated [70]fullerene derivatives, C70(CF2 )n (n=1-3), were obtained by the reaction of C70 with sodium difluorochloroacetate. Two major products, isomeric C70(CF2 ) mono-adducts with [6,6]-open and [6,6]-closed configurations, were isolated and their homofullerene and methanofullerene structures were reliably determined by a variety of methods that included X-ray analysis and high-level spectroscopic techniques. The [6,6]-open isomer of C70(CF2 ) constitutes the first homofullerene example of a non-hetero [70]fullerene derivative in which functionalisation involves the most reactive bond in the polar region of the cage. Voltammetric estimation of the electron affinity of the C70(CF2 ) isomers showed that it is substantially higher for the [6,6]-open isomer (the 70-electron π-conjugated system is retained) than the [6,6]-closed form, the latter being similar to the electron affinity of pristine C70. In situ ESR spectroelectrochemical investigation of the C70(CF2 ) radical anions and DFT calculations of the hyperfine coupling constants provide evidence for the first example of an inter-conversion between the [6,6]-closed and [6,6]-open forms of a cage-modified fullerene driven by an electrochemical one-electron transfer. Thus, [6,6]-closed C70(CF2 ) constitutes an interesting example of a redox-switchable fullerene derivative.
Read full abstract