Doping of the graphene lattice with transition metal atoms resulting in high magnetic anisotropy energy (MAE) is an important goal of materials research owing to its potential application in spintronics. In this article, by using spin-polarized density functional theory including spin-orbit coupling, we examined magnetic properties of graphene with vacancy defects, both bare and nitrogen-decorated, and doped by Cr, Mn and Fe transition metal single atom (TM-SA) and two different TM atoms simultaneously. [...] The computational findings are supplemented by an atomic-resolution characterization of an incidental Mn impurity bonded to four carbon atoms, whose localized spin matches expectations as measured using core-level electron energy-loss spectroscopy. Conducting TM-doped graphene with robust magnetic features offers prospects for the design of graphene-based spintronic devices.
Read full abstract