Abstract
The spontaneous magnetization of two-dimensional (2D) magnetic materials can be maintained down to the monolayer limit, providing an ideal platform for understanding and manipulating magnetic-related properties on a 2D scale, and making it important for potential applications in optoelectronics and spintronics. Transition metal halides (TMHs) are suitable 2D magnetic candidates due to partially filled d orbitals and weak interlayer van der Waals interactions. As a sophisticated thin film growth technique, molecular beam epitaxy (MBE) can precisely tune the growth of 2D magnetic materials reaching the monolayer limit. Moreover, combining with the advanced experimental techniques such as scanning tunneling microscopy, the physical properties of 2D magnetic materials can be characterized and manipulated on an atomic scale. Herein, we introduce the crystalline and magnetic structures of 2D magnetic TMHs, and show the 2D magnetic TMHs grown by MBE and their electronic and magnetic characterizations. Then, the MBE-based methods for tuning the physical property of 2D magnetic TMHs, including tuning interlayer stacking, defect engineering, and constructing heterostructures, are discussed. Finally, the future development opportunities and challenges in the field of the research of 2D magnetic TMHs are summarized and prospected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.