In polycrystalline austenitic stainless steels, a comprehensive three-dimensional configuration of crystal plasticity in relation to microstructure is required to elucidate the deformation behaviors during mechanical loading. In the present work, a combination of backscattered electron image (BSE) based high-resolution digital image correlation (HR-DIC) and laser scanning confocal microscopy (LSCM) was employed to simultaneously investigate in-plane and out-of-plane deformations at the sub-grain scale in 316 stainless steel. The high spatial resolution and precise alignment provided by the three-dimensional deformation assessment enable the identification of specific slip and twinning systems. This is achieved through the minimization of the residual L2 norm between the in-plane components of experimental and theoretical strain tensors. Dominant slip and few mechanical twinning activities are initiated at the early-stage of yielding, and their frequency and intensity increase with the applied load. The hierarchical networks formed by nanotwins, along with the presence of grain and annealing twin boundaries, serve as obstacles for slip glide, leading to substantial twin–slip interaction and grain boundary strengthening. As a consequence of wide mechanical twins formed by parallel nanotwins coalescence and strain localization at the twin boundary, slip transmission occurs, resulting in an effective accommodation of external stress. Furthermore, the consistent observation of out-of-plane roughness, in alignment with twinning Burgers vector predictions, offers valuable insights into the significant deformation gradient occurring in the vicinity of boundaries. This deformation gradient is influenced by the neighboring mechanical twinning activities, indicating strong obstacle to twin transmission and high back-stresses resulting from the highly misoriented grain boundary.
Read full abstract