Abstract

The effect of boundary conditions (constant load, constant strain and elastic follow-up) on lattice strain evolution during creep in a polycrystalline austenitic stainless steel was studied using in situ neutron diffraction at 550 °C. The lattice strains were found to remain constant under constant load control. However, under constant strain and elastic follow-up control, the lattice strains relaxed the most in the elastically softest lattice plane {200} and the least in the elastically stiffest lattice plane {111}. The intergranular stresses created between different grain families were constant during creep tests irrespective of the boundary conditions with the initial applied stresses of 250 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.