Abstract

Abstract In this study, the deformation behaviour of polycrystalline austenitic 316H stainless steel under uniaxial loading is investigated by means of in-situ neutron diffraction (ND) measurement and crystal plasticity-based finite element (FE) modelling. Data have been obtained for the macroscopic stress–strain response and the lattice strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. Comparison between the model predictions and the ND measurements suggests that in most cases the FE model can predict the lattice strain evolution at the microscale and capture the general trends observed in the experiments. Both ND measurements and FE modelling simulations identify little effect of micromorphology effect on the longitudinal lattice strain evolution, while the transverse lattice strain response appears to be sensitive to the microstructure, in particular the initial crystallographic orientation of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.