The effect of magnetic inducement in support preparation was studied to reduce coke and improve the activity of Ni catalysts for ethanol steam reforming (ESR) at 550–650 °C. Magnetic inducement was introduced to prepare 5 mol % CeO2 in Al2O3 support in order to control the composition and the distribution of Ce in Al2O3. The results show that using CeO2–Al2O3 support with magnetic inducement affects both hydrogen production and coke reduction, where Ni/CeO2–Al2O3 support prepared under magnetic inducement with N–N pole arrangement (Ni/CeO2–Al2O3 (N–N)) exhibited the highest hydrogen production and the lowest coke formation among the catalysts used in this work. Compared with Ni/CeO2–Al2O3 (no magnet), Ni/CeO2–Al2O3 (N–N) catalysts yield 14.0% higher H2 production and 31.7% less coke production. The modified catalyst preparation process used in this study could create catalysts for hydrogen production from ESR which are high in performance and stability but low in preparation cost.
Read full abstract