Abstract

Conventionally, many single-degree-of-freedom (single-DOF) actuators have been used to realize devices with multiple-degrees-of-freedom (multi-DOF). However, this makes their structures larger, heavier, and more complicated. In order to remove these drawbacks, the development of spherical actuators with multi-DOF is necessary. In this paper, we propose a new 3-DOF outer rotor electromagnetic spherical actuator with high torque density and wide rotation angles. The dynamic characteristics are computed employing 3-D FEM and its effectiveness is verified by carrying out measurements on a prototype. Then, in order to realize further high torque density, the electromagnetic pole arrangement is optimized using Genetic Algorithm (GA) and the effectiveness of the optimized stator poles arrangement is verified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.