A universal multiscale conditional coding framework, Unicorn, is proposed to compress the geometry and attribute of any given point cloud. Geometry compression is addressed in Part I of this paper, while attribute compression is discussed in Part II. We construct the multiscale sparse tensors of each voxelized point cloud frame and properly leverage lower-scale priors in the current and (previously processed) temporal reference frames to improve the conditional probability approximation or content-aware predictive reconstruction of geometry occupancy in compression. Unicorn is a versatile, learning-based solution capable of compressing static and dynamic point clouds with diverse source characteristics in both lossy and lossless modes. Following the same evaluation criteria, Unicorn significantly outperforms standard-compliant approaches like MPEG G-PCC, V-PCC, and other learning-based solutions, yielding state-of-the-art compression efficiency while presenting affordable complexity for practical implementations.
Read full abstract