Abstract

Recent years have witnessed the success of deep learning methods in quality enhancement of compressed point cloud. However, existing methods focus on geometry and attribute enhancement of single-frame point cloud. This paper proposes a novel compressed quality enhancement method for dynamic point cloud (DAE-MP). Specifically, we propose a fast inter-frame motion prediction module (IFMP) to explicitly estimate motion displacement and achieve inter-frame feature alignment. To maintain motion continuity between consecutive frames, we propose a motion consistency loss for supervised learning. Furthermore, a frequency component separation and fusion module is designed to extract rich frequency features adaptively. To the best of our knowledge, the proposed method is the first deep learning-based work to enhance the quality for compressed dynamic point cloud. Experimental results show that the proposed method can greatly improve the quality of compressed dynamic point cloud and provide a fast and efficient motion prediction plug-in for large-scale point cloud. For dynamic point cloud attribute with severely compressed artifact, our proposed DAE-MP method achieves up to 0.52dB (PSNR) performance gain. Moreover, the proposed IFMP module has a certain real-time processing ability for calculating the motion offset between dynamic point cloud frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.