Abstract

To address the challenges of sparse point clouds in current MIMO millimeter-wave radar environmental mapping, this paper proposes a dense 3D millimeter-wave radar point cloud environmental mapping algorithm. In the preprocessing phase, a radar SLAM-based approach is introduced to construct local submaps, which replaces the direct use of radar point cloud frames. This not only reduces data dimensionality but also enables the proposed method to handle scenarios involving vehicle motion with varying speeds. Building on this, a 3D-RadarHR cross-modal learning network is proposed, which uses LiDAR as the target output to train the radar submaps, thereby generating a dense millimeter-wave radar point cloud map. Experimental results across multiple scenarios, including outdoor environments and underground tunnels, demonstrate that the proposed method can increase the point cloud density of millimeter-wave radar environmental maps by over 50 times, with a point cloud accuracy better than 0.1 m. Compared to existing algorithms, the proposed method achieves superior environmental map reconstruction performance while maintaining a real-time processing rate of 15 Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.