Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngon idellus) production in China. VP6 could be suitable for developing vaccine for the control of GCRV. Transgenic plants are an attractive bioreactor for their safety and ability to make economical vaccines. The B subunit of Escherichia coli heat-labile enterotoxin (LTB) fused to VP6 (LTB-VP6) was transformed into rice calli by Agrobacterium tumefaciens-mediated gene transformation. Transgenic rice calli was confirmed by PCR analysis separately. The copy numbers of LTB-VP6 inserted into the rice genome are between 1 and 2. The expression level of LTB-VP6 in rice calli was 0.0005–0.0019%, an average of 0.0011% of the TSP(total soluble proteins). LTB-VP6 was folded and assembled into a pentameric form of approximately 305 kDa capable of binding monosialoganglioside (GM1). The suitable concentration of LTB-VP6 in TSP was 0.4 μg/μl. LTB-VP6 is stable and highly active at room temperature. LTB-VP6 binding to GM1 is affected with different affinities under different temperatures. LTB-VP6 had a strong binding affinity at 25 °C and pH 8.4. Our results showed that LTB-VP6 is capable of forming an active pentameric form protein. It provides an ideal alternative to plant-based vaccines against GCRV in aquaculture.
Read full abstract