A virtual knot that has a homologically trivial representative [Formula: see text] in a thickened surface [Formula: see text] is said to be an almost classical (AC) knot. [Formula: see text] then bounds a Seifert surface [Formula: see text]. Seifert surfaces of AC knots are useful for computing concordance invariants and slice obstructions. However, Seifert surfaces in [Formula: see text] are difficult to construct. Here, we introduce virtual Seifert surfaces of AC knots. These are planar figures representing [Formula: see text]. An algorithm for constructing a virtual Seifert surface from a Gauss diagram is given. This is applied to computing signatures and Alexander polynomials of AC knots. A canonical genus of AC knots is also studied. It is shown to be distinct from the virtual canonical genus of Stoimenow–Tchernov–Vdovina.