Abstract

A virtual knot that has a homologically trivial representative [Formula: see text] in a thickened surface [Formula: see text] is said to be an almost classical (AC) knot. [Formula: see text] then bounds a Seifert surface [Formula: see text]. Seifert surfaces of AC knots are useful for computing concordance invariants and slice obstructions. However, Seifert surfaces in [Formula: see text] are difficult to construct. Here, we introduce virtual Seifert surfaces of AC knots. These are planar figures representing [Formula: see text]. An algorithm for constructing a virtual Seifert surface from a Gauss diagram is given. This is applied to computing signatures and Alexander polynomials of AC knots. A canonical genus of AC knots is also studied. It is shown to be distinct from the virtual canonical genus of Stoimenow–Tchernov–Vdovina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.