Abstract
A diagram D of a knot defines the corresponding Gauss Diagram G D . However, not all Gauss diagrams correspond to the ordinary knot diagrams. From a Gauss diagram G we construct closed surfaces F G and S G in two different ways, and we show that if the Gauss diagram corresponds to an ordinary knot diagram D, then their genus is the genus of the canonical Seifert surface associated to D. Using these constructions we introduce the virtual canonical genus invariant of a virtual knot and find estimates on the number of alternating knots of given genus and given crossing number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.