Light-matter interaction is crucial to both understanding fundamental phenomena and developing versatile applications. Strong coupling, robustness, and controllability are the three most important aspects in realizing light-matter interactions. Topological and non-Hermitian photonics have provided frameworks for robustness and control flexibility, respectively. How to engineer the properties of the edge state such as photonic density of state by using non-Hermiticity while ensuring topological protection has not been fully studied. Here we construct a parity-time-symmetric dimerized photonic lattice and probe the spontaneous PT-symmetry breaking of the edge states by utilizing the strong coupling between the photonic mode and a spin ensemble. Our Letter presents an accurate and almost noninvasive approach for investigating non-Hermitian topological states, while also offering methodologies for the implementation and manipulation of topological light-matter interactions.
Read full abstract