Abstract
The concepts of topology provide a powerful tool to tailor the propagation and localization of the waves. While electrons have only two available spin states, engineered degeneracies of photonic modes provide novel opportunities resembling spin degrees of freedom in condensed matter. Here, we tailor such degeneracies for the array of femtosecond laser written waveguides in the optical range exploiting the idea of photonic molecules: clusters of strongly coupled waveguides. In our experiments, we observe unconventional topological modes protected by the Z3 invariant arising due to the interplay of interorbital coupling and geometric dimerization mechanism. We track multiple topological transitions in the system with the change in the lattice spacings and excitation wavelength. This strategy opens an avenue for designing novel types of photonic topological phases and states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.