Abstract

Quantum spin Hall (QSH) insulators are topologically protected phases of matter in two dimensions that can support a pair of helical edge states surrounding an insulating bulk. A higher (even) number of helical edge state pairs is usually not possible in real materials because spin mixing would gap out the edge states. Here, we report experimental evidence for a QSH phase with one and two pairs of helical edge states in twisted bilayer WSe2 at Moiré hole filling factor ν = 2 and 4, respectively. We observe nearly quantized (within 10%) resistance plateaus of and large nonlocal transport at ν = 2 and 4 while the bulk is insulating. The resistance is independent of the out-of-plane magnetic field and increases under an in-plane magnetic field. The results agree with quantum transport of helical edge states in a material with high spin Chern bands protected by Ising spin conservation symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.