Abstract

Terahertz (THz) continuous wave (CW) spectroscopy systems can offer extremely high spectral resolution over the THz band by photo-mixing high-performance telecommunications-band (1530-1565 nm) lasers. However, typical THz CW detectors in these systems use narrow band-gap photoconductors, which require elaborate material growth and generate relatively large detector noise. Here we demonstrate that two-step photon absorption in a nano-structured low-temperature grown GaAs (LT-GaAs) metasurface which enables switching of photoconductivity within approximately one picosecond. We show that LT-GaAs can be used as an ultrafast photoconductor in CW THz detectors despite having a bandgap twice as large as the telecommunications laser photon energy. The metasurface design harnesses Mie modes in LT GaAs resonators, whereas metallic electrodes of THz detectors can be designed to support an additional photonic mode, which further increases photoconductivity at a desired wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.