Several mechanisms have been suggested to explain the adverse effects of air pollutants on airway cells. One such explanation is the presence of high concentrations of oxidants and pro-oxidants in environmental pollutants. All animal and plant cells have developed several mechanisms to prevent damage by oxidative molecules. Among these, the peroxiredoxins (PRDXs) are of interest due to a high reactivity with reactive oxygen species (ROS) through the functioning of the thioredoxin/thioredoxin reductase system. This study aimed to verify the gene expression patterns of the PRDX family in bronchial epithelial airway cells (BEAS-2B) cells exposed to diesel exhaust particles (DEPs) at a concentration of 15 μg/mL for 1 or 2 h because this it is a major component of particulate matter in the atmosphere. There was a significant decrease in mRNA fold changes of PRDX2 (0.43 ± 0.34; *p = 0.0220), PRDX5 (0.43 ± 0.34; *p = 0.0220), and PRDX6 (0.33 ± 0.25; *p = 0.0069) after 1 h of exposure to DEPs. The reduction in mRNA levels may consequently lead to a decrease in the levels of PRDX proteins, increasing oxidative stress in bronchial epithelial cells BEAS-2B and thus, negatively affecting cellular functions.
Read full abstract