Irradiation induced defects in silicon are technologically important as they impact the electronic properties. Calculations based on density functional theory employing hybrid functionals have been previously used to investigate the structures and relative energies of defect clusters formed between vacancies, self-interstitials, carbon and oxygen atoms in silicon. In this study we employ a model to calculate the relative concentrations of carbon related defects in silicon. It is calculated that the carbon content has a significant impact upon the concentration of carbon-related defects. The CiCs defect is the most populous for all the conditions considered followed by the CiOiSiI and the CiOi defects. CiOiSiI and the CiOi become increasingly important for silicon with high carbon concentrations.