Abstract

The electronic properties and structure of a complex incorporating a self-interstitial (I) and two oxygen atoms are presented by a combination of deep level transient spectroscopy (DLTS), infrared absorption spectroscopy and ab-initio modeling studies. It is argued that the IO2 complex in Si can exist in four charge states (IO− 2 , IO02 , IO+ 2 , and IO++ 2 ). The first and the second donor levels of the IO2 complex show an inverted location order in the gap, leading to a E(0/ + +) occupancy level at Ev + 0.255 eV. Activation energies for hole emission, transformation barriers between different structures, and positions of LVM lines for different configurations and charge states have been determined. These observables were calculated by density-functional calculations, which show that they are accounted for if we consider at least two charge-dependent defect structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.