Abstract

ABSTRACTA monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski (CZ)-grown Si with either thermally grown S1O2 (100 nm thick) or silicon oxide (p-SiOx) deposited by plasma enhanced chemical vaper deposition technique on the surface. Both the growth of thermal SiO2 and the deposition of SiOx film resulted in a reduction of the doppler-broadening line shape parameter (S-parameter) for the positron annihilation in the bulk silicon region. Annealing at 450δC, the removal of oxide overlayer or long-term aging at room temperature caused the S-parameter to return to its intrinsic value. It was thought that tensile stress in silicon, induced by the thermal oxidation or the deposition of SiOx films which had compressive internal stress themselves, enhanced the rearrangement of oxygen atoms and caused the formation of oxygen clusters in silicon crystal. Oxygen interstitial clusters can trap positrons leading to the lower S-parameter value for annihilation in the bulk silicon region, because of large overlap with core electrons. The above results suggest that oxygen atoms can absorb lattice strain by clustering and thus prevent the generation of dislocations against external stress in the Si lattice. This results yield an additional explanation of the high mechanical strength of CZ Si crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.