The nucleation and growth of single-layer molybdenum disulfide single-domain nanosheets is investigated by in situ low-energy electron microscopy. We study the growth of micrometer-sized flakes and the correlated flattening process of the gold surface for three different elevated temperatures. Furthermore, the influence of surface step edges on the molybdenum disulfide growth process is revealed. We show that both nanosheet and underlying terrace grow simultaneously by pushing the surface step in the expansion process. Our findings point to an optimized growth procedure allowing for step-free, single-domain, single-layer islands of several micrometers in size, which is likely transferable to other transition-metal dichalcogenides (TMDs), offering a very fine degree of control over the TMD nanosheet structure and thickness.
Read full abstract