This study presents a novel approach for controlling an industrial process that exhibits uncertainty and significant nonlinear features. The proposed method utilizes a virtual unmodeled dynamic and data-driven nonlinear robust predictive control strategy. The representation of a controlled object involves a composite state space model that combines both linear and high-order nonlinear elements. Moreover, a robust model predictive controller is developed using the linear component. In addition, the notion of one-step optimal feedforward is used in combination with a compensating controller to handle the high-order nonlinear factor specifically. Subsequently, a compensation controller with incremental characteristics is developed for a modified version of the high-order nonlinear term. Furthermore, the stability conditions of the closed-loop system are derived, and an analysis is conducted on the stability and convergence of the proposed approach. The TTS20 three-capacity water tank was utilized in both simulations and practical scenarios. The study demonstrated that the suggested approach successfully reduces system output variations and enhances overall performance in response to unpredictable changes in the process’s dynamic features.
Read full abstract