Abstract
The high-dynamic permanent magnet (PM) motor servo system with high-bandwidth is the core equipment for industrial production, and the control bandwidth is also an important indexes to evaluate the performance of the servo system. The non-cascaded direct predictive speed control is an appropriate scheme to optimize the dynamic performance of the PM motor servo system. However, the high bandwidth of the non-cascaded control structure results in poor anti-interference ability, and it cannot effectively deal with the coupling relationship between current and speed, leading to poor control performance in the current limit region. Regarding the above problems, a nonlinear predictive speed control strategy combined with harmonic disturbance observer is proposed. In the proposed strategy, the disturbances of the servo system are separated from the mathematical model according to the nonlinear modeling theory, and the traditional disturbance observer is modified to estimate the harmonics. A nonlinear control law with strong disturbance suppression ability was designed. Furthermore, a complete current and speed prediction mechanism was introduced into the algorithm, in which the proportional differential (PD) controller is employed as the connection medium between the reference current and speed to solve the coupling problem of the non-cascaded control structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Energies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.