Abstract
Wind energy today, has attracted widespread interest from among a variety of sources of renewable energy in the world. Owing to the increasing demand for production of electrical energy for electricity networks by using wind power, it is essential that wind power plants are actively incorporated in the network’s performance using an appropriate control system. In general, these wind power plants consist of various types of wind turbines and generators, one of them being a doubly fed induction generator (DFIG). Strict and total control of DFIG is necessary for maintaining a high level of efficiency in utilizing the advantages and benefits of a modern wind plant. To achieve this aim, using the linear controllers is a difficult method because the wind plants involve some uncertainties. Nevertheless, there exists an unstable condition which may reduce the DFIG system’s performance. In this research, a predictive control has been proposed for power control in order to overcome these problems. Control is established by optimizing a Cost Function considering the reality of the tracking factors. The prediction has been done on the basis of a DFIG model. Finally, results of the simulations carried out proved the performance of the controller. Article history:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.