Abstract

Renewable energy systems, especially wind energy have attracted interest as a result of the increasing concern about CO2 emissions. Wind energy systems using a doubly fed induction generator (DFIG) have some advantages due to variable speed operation and four quadrants active and reactive power capabilities compared with fixed speed squirrel cage induction generators (Simoes & Farret, 2004). The stator of DFIG is directly connected to the grid and the rotor is connected to the grid by a bi-directional converter as shown in Figure 1. The converter connected to the rotor controls the active and the reactive power between the stator of the DFIG and ac supply or a stand-alone grid (Jain & Ranganathan, 2008). The control of the wind turbine systems is traditionally based on either stator-flux-oriented (Chowdhury & Chellapilla, 2006) or stator-voltage-oriented (Hopfensperger et al, 2000) vector control. The scheme decouples the rotor current into active and reactive power components. The control of the active and reactive power is achieved with a rotor current controller. Some investigations using PI controllers and stator-flux-oriented have been reported by Pena et al (2008). The problem with the use of a PI controller is the tuning of gains and the cross-coupling on DFIG terms in the whole operating range. Some investigations using predictive functional controller (Morren et al, 2005) and internal mode controller (Guo et al, 2008) have presented a satisfactory power response when compared with the power response of PI, but it is hard to implement one of them due to the predictive functional controller and internal mode controller formulation. Another way to achieve the DFIG power control is using fuzzy logic (Yao et al, 2007). The controllers calculate at each sample interval the voltage rotor to be supplied to the DFIG to guarantee that the active and the reactive power reach their desired reference values. These strategies have satisfactory power response, although the errors in parameters estimation and the fuzzy rules can degrade the system response. The aim of this chapter is to provide the designing and the modeling of a deadbeat power control scheme for DFIG in accordance with the present state of the art. In this way, the deadbeat power control aims the stator active and reactive power control using the discretized DFIG equations in synchronous coordinate system and stator flux orientation. The deadbeat controller calculates the rotor voltages required to guarantee that the stator active and reactive power reach their desired references values at each sample period using a rotor current space vector loop. Experimental results using a TMS320F2812 plataform are presented to validate the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call