초분광 영상에 내재된 비선형 현상을 다루기 위해서는 과거에 주로 사용되었던 선형 피처 추출 방법은 적합하지 않았다. 따라서 최근 Manifold learning이라 불리우는 비선형 피처 추출 방법이 초분광 원격탐사 분야를 비롯 여러 분야에서 관심이 증가되고 있다. Manifold learning 방법 중 널리 이용되는 Isomap은 분류와 분광 혼합 분석 등의 분야에서 좋은 결과를 보여주지만, 지나치게 복잡하고 높은 계산량은, 특히 원격탐사 자료와 같이 자료의 크기가 큰 경우 문제가 된다. 따라서 자료의 일부분을 이용하는 랜드마크 기법이 해결책으로 제안 되었다. 본 연구에서는 좀 더 통제가 가능한 랜드마크 추출을 위해 자료를 구성하는 최대 부피를 지닌 Simplex를 이용하여 랜드마크를 선택하는 방법을 제안한다. 초분광 영상을 이용하여 랜드마크의 개수, 선택 방법에 따른 분류 정확도와 편차, 그리고 처리 시간을 비교하였고, 그 결과 제안된 랜드마크 선택 기법은 분류 정확도, 처리시간 모두에서 효율적인 결과를 보여주었다. Since traditional linear feature extraction methods are unable to handle nonlinear characteristics often exhibited in hyperspectral imagery, nonlinear feature extraction, also known as manifold learning, is receiving increased attention in hyperspectral remote sensing society as well as other community. A most widely used manifold Isomap is generally promising good results in classification and spectral unmixing tasks, but significantly high computational overhead is problematic, especially for large scale remotely sensed data. A small subset of distinguishing points, referred to as landmarks, is proposed as a solution. This study proposes a new robust and controllable landmark selection method based on the maximum volume of the simplex spanned by landmarks. The experiments are conducted to compare classification accuracies with standard deviation according to sampling methods, the number of landmarks, and processing time. The proposed method could employ both classification accuracy and computational efficiency.
Read full abstract