Abstract

A nonlinear speech feature extraction algorithm was developed by modeling human cochlear functions, and demonstrated as a noise-robust front-end for speech recognition systems. The algorithm was based on a model of the Organ of Corti in the human cochlea with such features as such as basilar membrane (BM), outer hair cells (OHCs), and inner hair cells (IHCs). Frequency-dependent nonlinear compression and amplification of OHCs were modeled by lateral inhibition to enhance spectral contrasts. In particular, the compression coefficients had frequency dependency based on the psychoacoustic evidence. Spectral subtraction and temporal adaptation were applied in the time-frame domain. With long-term and short-term adaptation characteristics, these factors remove stationary or slowly varying components and amplify the temporal changes such as onset or offset. The proposed features were evaluated with a noisy speech database and showed better performance than the baseline methods such as mel-frequency cepstral coefficients (MFCCs) and RASTA-PLP in unknown noisy conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.