Abstract
Nonlinear feature extraction used standard Kernel Principal Component Analysis (KPCA) method has large memories and high computational complexity in large datasets. A Greedy Kernel Principal Component Analysis (GKPCA) method is applied to reduce training data and deal with the nonlinear feature extraction problem for training data of large data in classification. First, a subset, which approximates to the original training data, is selected from the full training data using the greedy technique of the GKPCA method. Then, the feature extraction model is trained by the subset instead of the full training data. Finally, FCM algorithm classifies feature extraction data of the GKPCA, KPCA and PCA methods, respectively. The simulation results indicate that the feature extraction performance of both the GKPCA, and KPCA methods outperform the PCA method. In addition of retaining the performance of the KPCA method, the GKPCA method reduces computational complexity due to the reduced training set in classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.