Response analyses of vibroimpact systems to random excitation are greatly facilitated by using certain piecewise-linear transformations of state variables, which reduce the impact-type nonlinearities (with velocity jumps) to nonlinearities of the “common” type — without velocity jumps. This reduction permitted to obtain certain exact and approximate asymptotic solutions for stationary probability densities of the response for random vibration problems with white-noise excitation. Moreover, if a linear system with a single barrier has its static equilibrium position exactly at the barrier, then the transformed equation of free vibration is found to be perfectly linear in case of the elastic impact. The transformed excitation term contains a signature-type nonlinearity, which is found to be of no importance in case of a white-noise random excitation. Thus, an exact solution for the response spectral density had been obtained previously for such a vibroimpact system, which may be called “pseudolinear”, for the case of a white-noise excitation. This paper presents analysis of a lightly damped pseudolinear SDOF vibroimpact system under a non-white random excitation. Solution is based on Fourier series expansion of a signum function for narrow-band response. Formulae for mean square response are obtained for resonant case, where the (narrow-band) response is predominantly with frequencies, close to the system's natural frequency; and for non-resonant case, where frequencies of the narrow-band excitation dominate the response. The results obtained may be applied directly for studying response of moored bodies to ocean wave loading, and may also be used for establishing and verifying procedures for approximate analysis of general vibroimpact systems.
Read full abstract