Methods are developed for finding an optimal model for a non-Gaussian stationary stochastic process or homogeneous random field under limited information. The available information consists of: (i) one or more finite length samples of the process or field; and (ii) knowledge that the process or field takes values in a bounded interval of the real line whose ends may or may not be known. The methods are developed and applied to the special case of non-Gaussian processes or fields belonging to the class of beta translation processes. Beta translation processes provide a flexible model for representing physical phenomena taking values in a bounded range, and are therefore useful for many applications. Numerical examples are presented to illustrate the utility of beta translation processes and the proposed methods for model selection.
Read full abstract