Abstract

This paper introduces geostatistical approaches (i.e., kriging estimation and simulation) for a group of non-Gaussian random fields that are power algebraic transformations of Gaussian and lognormal random fields. These are power random fields (PRFs) that allow the construction of stochastic polynomial series. They were derived from the exponential random field, which is expressed as Taylor series expansion with PRF terms. The equations developed from computation of moments for conditional random variables allow the correction of Gaussian kriging estimates for the non-Gaussian space. The introduced PRF geostatistics shall provide tools for integration of data that requires simple algebraic transformations, such as regression polynomials that are commonly encountered in the practical applications of estimation. The approach also allows for simulations drawn from skewed distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.