Abstract

Starting with the Wigner distribution formulation for beam wave propagation in Hölder continuous non-Gaussian random refractive index fields we show that the wave beam regime naturally leads to the white-noise scaling limit and converges to a Gaussian white-noise model which is characterized by the martingale problem associated to a stochastic differential-integral equation of the Itô type. In the simultaneous geometrical optics the convergence to the Gaussian white-noise model for the Liouville equation is also established if the ultraviolet cutoff or the Fresnel number vanishes sufficiently slowly. The advantage of the Gaussian white-noise model is that its n-point correlation functions are governed by closed form equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.