Abstract

Starting with the Wigner distribution formulation for beam wave propagation in Hölder continuous non-Gaussian random refractive index fields we show that the wave beam regime naturally leads to the white-noise scaling limit and converges to a Gaussian white-noise model which is characterized by the martingale problem associated to a stochastic differential-integral equation of the Itô type. In the simultaneous geometrical optics the convergence to the Gaussian white-noise model for the Liouville equation is also established if the ultraviolet cutoff or the Fresnel number vanishes sufficiently slowly. The advantage of the Gaussian white-noise model is that its n-point correlation functions are governed by closed form equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call