Abstract

The evaluation of specimen thickness effect of fatigue crack growth life by the simulation of probabilistic fatigue crack growth is presented. In this paper, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which varies randomly on the crack surface. Using the previous experimental data, the non-Gaussian (eventually Weibull, in this report) random fields simulation method is applied. This method is useful to estimate the probability distribution of fatigue crack growth life and the variability due to specimen thickness by simulating material resistance to fatigue crack growth along a crack path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.