Nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis system in smooth bounded domains Omega subset {mathbb {R}}^n, n ge 1, are known to be global in time if lambda ge 0, mu > 0 and kappa > 2. In the present work, we show that the exponent kappa = 2 is actually critical in the four- and higher dimensional setting. More precisely, if n≥4,κ∈(1,2)andμ>0orn≥5,κ=2andμ∈0,n-4n,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\qquad n&\\ge 4,&\\quad \\kappa \\in (1, 2) \\quad&\\text {and} \\quad \\mu > 0 \\\\ \\text {or}\\qquad n&\\ge 5,&\\quad \\kappa = 2 \\quad&\\text {and} \\quad \\mu \\in \\left( 0, \\frac{n-4}{n}\\right) , \\end{aligned}$$\\end{document}for balls Omega subset {mathbb {R}}^n and parameters lambda ge 0, m_0 > 0, we construct a nonnegative initial datum u_0 in C^0({{overline{Omega }}}) with int nolimits _Omega u_0 = m_0 for which the corresponding solution (u, v) of (star ) blows up in finite time. Moreover, in 3D, we obtain finite-time blow-up for kappa in (1, frac{3}{2}) (and lambda ge 0, mu > 0). As the corner stone of our analysis, for certain initial data, we prove that the mass accumulation function w(s, t) = int nolimits _0^{root n of {s}} rho ^{n-1} u(rho , t) ,mathrm {d}rho fulfills the estimate w_s le frac{w}{s}. Using this information, we then obtain finite-time blow-up of u by showing that for suitably chosen initial data, s_0 and gamma , the function phi (t) = int nolimits _0^{s_0} s^{-gamma } (s_0 - s) w(s, t) cannot exist globally.
Read full abstract