Abstract
This paper is concerned with a general asymptotic stabilization of arbitrary global positive bounded solutions for the Lotka Volterra reaction diffusion systems, with an additional chemotactic influence and constant coefficients. We consider the dynamics of a mathematical model involving two biological species, both of which move according to random diffusion and are attracted/ repulsed by chemical stimulus produced by the other. The biological species present the ability to orientate their movement towards the concentration of the chemical secreted by the other species. The nonlinear system consists of two parabolic equations with Lotka-Volterra-type kinetic terms coupled with chemotactic cross-diffusion, along with two elliptic equations describing the behavior of the chemicals. We prove that the solution to the corresponding Neumann initial boundary value problem is global and bounded for regular and positive initial data. Moreover, for different ranges of parameters, we show that any positive and bounded solution converges to a spatially constant homogeneous state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.