We consider Neumann initial-boundary value problem for the Korteweg–de Vries equation on a half-line (0.1) { u t + λ u u x + u x x x = 0 , t > 0 , x > 0 , u ( x , 0 ) = u 0 ( x ) , x > 0 , u x ( 0 , t ) = 0 , t > 0 . We prove that if the initial data u 0 ∈ H 1 0 , 21 4 ∩ H 2 1 , 7 2 and the norm ‖ u 0 ‖ H 1 0 , 21 4 + ‖ u 0 ‖ H 2 1 , 7 2 ⩽ ε , where ε > 0 is small enough H p s , k = { f ∈ L 2 ; ‖ f ‖ H p s , k = ‖ 〈 x 〉 k 〈 i ∂ x 〉 s f ‖ L p < ∞ } , 〈 x 〉 = 1 + x 2 and λ ∫ 0 ∞ x u 0 ( x ) d x = λ θ < 0 . Then there exists a unique solution u ∈ C ( [ 0 , ∞ ) , H 2 1 , 7 2 ) ∩ L 2 ( 0 , ∞ ; H 2 2 , 3 ) of the initial-boundary value problem (0.1). Moreover there exists a constant C such that the solution has the following asymptotics u ( x , t ) = C θ ( 1 + η log t ) −1 t − 2 3 A i ′ ( x t 3 ) + O ( ε 2 t − 2 3 ( 1 + η log t ) − 6 5 ) for t → ∞ uniformly with respect to x > 0 , where η = − 9 θ λ ∫ 0 ∞ A i ′ 2 ( z ) d z and A i ( q ) is the Airy function A i ( q ) = 1 2 π i ∫ − i ∞ i ∞ e − z 3 + z q d z = 1 π Re ∫ 0 ∞ e − i ξ 3 + i ξ q d ξ .
Read full abstract